Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Stem Cell ; 30(8): 1028-1042.e7, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37541209

RESUMO

Impaired differentiation of alveolar stem cells has been identified in a variety of acute and chronic lung diseases. In this study, we investigate the mechanisms that modulate alveolar regeneration and understand how aging impacts this process. We have discovered that the process of alveolar type II (AT2) cells differentiating into AT1 cells is an energetically costly process. During alveolar regeneration, activated AMPK-PFKFB2 signaling upregulates glycolysis, which is essential to support the intracellular energy expenditure that is required for cytoskeletal remodeling during AT2 cell differentiation. AT2 cells in aged lungs exhibit reduced AMPK-PFKFB2 signaling and ATP production, resulting in impaired alveolar regeneration. Activating AMPK-PFKFB2 signaling in aged AT2 cells can rescue defective alveolar regeneration in aged mice. Thus, beyond demonstrating that cellular energy metabolism orchestrates with stem cell differentiation during alveolar regeneration, our study suggests that modulating AMPK-PFKFB2 signaling promotes alveolar repair in aged lungs.


Assuntos
Proteínas Quinases Ativadas por AMP , Células Epiteliais Alveolares , Camundongos , Animais , Proteínas Quinases Ativadas por AMP/metabolismo , Células Epiteliais Alveolares/metabolismo , Pulmão , Células-Tronco , Diferenciação Celular , Glicólise
2.
Sci China Life Sci ; 62(8): 1028-1037, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31321669

RESUMO

The aging of alveolar stem cells has been linked to many chronic lung diseases, including pulmonary fibrosis. However, the effects of aging on alveolar stem cells during homeostasis and post-injury alveolar repair have not been well characterized. Here we conducted a single-cell RNA sequencing (scRNA-seq) analysis of alveolar stem cells of 3-month-old and 12-month-old mice to characterize the aging effect on alveolar stem cells. Our results have shown that the transcriptomes of alveolar stem cells of 3-month-old and 12-month-old mice are not significantly different under the steady condition. However, after a bleomycin-induced lung injury, the alveolar stem cells of 12-month-old mice show enhanced inflammatory responses and decreased lipid metabolism. Our study suggests a close relationship among aging, lipid metabolism, inflammatory responses and chronic lung diseases.


Assuntos
Fibrose Pulmonar/metabolismo , Células-Tronco/metabolismo , Fatores Etários , Animais , Metabolismo dos Lipídeos , Masculino , Camundongos Transgênicos , Modelos Animais , Pneumonia/metabolismo , Alvéolos Pulmonares/citologia , RNA Citoplasmático Pequeno/metabolismo , Análise de Sequência de RNA , Análise de Célula Única , Transcriptoma
3.
Sci Rep ; 8(1): 14344, 2018 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-30254199

RESUMO

Genetic studies have shown that FGF10/FGFR2 signaling is required for airway branching morphogenesis and FGF10 functions as a chemoattractant factor for distal epithelial cells during lung development. However, the detail downstream cellular and molecular mechanisms have not been fully characterized. Using live imaging of ex vivo cultured lungs, we found that tip airway epithelial progenitor cells migrate faster than cleft cells during airway bud formation and this migration process is controlled by FGFR2-mediated ERK1/2 signaling. Additionally, we found that airway progenitor cells that migrate faster tend to become distal airway progenitor cells. We identified that Anxa4 is a downstream target of ERK1/2 signaling. Anxa4-/- airway epithelial cells exhibit a "lag-behind" behavior and tend to stay at the stalk airways. Moreover, we found that Anxa4-overexpressing cells tend to migrate to the bud tips. Finally, we demonstrated that Anxa4 functions redundantly with Anxa1 and Anxa6 in regulating endoderm budding process. Our study demonstrates that ERK1/2/Anxa4 signaling plays a role in promoting the migration of airway epithelial progenitor cells to distal airway tips and ensuring their distal cell fate.


Assuntos
Anexina A4/metabolismo , Movimento Celular , Células Epiteliais/citologia , Pulmão/citologia , Células-Tronco/citologia , Animais , Anexina A4/deficiência , Anexina A4/genética , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Sistema de Sinalização das MAP Quinases , Camundongos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo
4.
Dev Cell ; 44(3): 297-312.e5, 2018 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-29408236

RESUMO

The differentiation of alveolar epithelial type I (AT1) and type II (AT2) cells is essential for the lung gas exchange function. Disruption of this process results in neonatal death or in severe lung diseases that last into adulthood. We developed live imaging techniques to characterize the mechanisms that control alveolar epithelial cell differentiation. We discovered that mechanical forces generated from the inhalation of amniotic fluid by fetal breathing movements are essential for AT1 cell differentiation. We found that a large subset of alveolar progenitor cells is able to protrude from the airway epithelium toward the mesenchyme in an FGF10/FGFR2 signaling-dependent manner. The cell protrusion process results in enrichment of myosin in the apical region of protruded cells; this myosin prevents these cells from being flattened by mechanical forces, thereby ensuring their AT2 cell fate. Our study demonstrates that mechanical forces and local growth factors synergistically control alveolar epithelial cell differentiation.


Assuntos
Células Epiteliais Alveolares/citologia , Diferenciação Celular , Movimento Celular/fisiologia , Embrião de Mamíferos/citologia , Fator 10 de Crescimento de Fibroblastos/fisiologia , Fenômenos Mecânicos , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/fisiologia , Células Epiteliais Alveolares/metabolismo , Animais , Células Cultivadas , Embrião de Mamíferos/metabolismo , Feminino , Mesoderma/citologia , Mesoderma/metabolismo , Camundongos , Camundongos Knockout , Transdução de Sinais
5.
Dev Cell ; 44(3): 313-325.e5, 2018 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-29337000

RESUMO

Oriented cell division plays a key role in controlling organogenesis. The mechanisms for regulating division orientation at the whole-organ level are only starting to become understood. By combining 3D time-lapse imaging, mouse genetics, and mathematical modeling, we find that global orientation of cell division is the result of a combination of two types of spindles with distinct spindle dynamic behaviors in the developing airway epithelium. Fixed spindles follow the classic long-axis rule and establish their division orientation before metaphase. In contrast, rotating spindles do not strictly follow the long-axis rule and determine their division orientation during metaphase. By using both a cell-based mechanical model and stretching-lung-explant experiments, we showed that mechanical force can function as a regulatory signal in maintaining the stable ratio between fixed spindles and rotating spindles. Our findings demonstrate that mechanical forces, cell geometry, and oriented cell division function together in a highly coordinated manner to ensure normal airway tube morphogenesis.


Assuntos
Divisão Celular , Células Epiteliais/citologia , Fenômenos Mecânicos , Morfogênese/fisiologia , Sistema Respiratório/citologia , Animais , Células Cultivadas , Células Epiteliais/metabolismo , Feminino , Camundongos , Sistema Respiratório/embriologia , Sistema Respiratório/metabolismo
6.
Cell Rep ; 16(7): 1810-9, 2016 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-27498861

RESUMO

The pulmonary alveolar epithelium undergoes extensive regeneration in response to lung injuries, including lung resection. In recent years, our understanding of cell lineage relationships in the pulmonary alveolar epithelium has improved significantly. However, the molecular and cellular mechanisms that regulate pneumonectomy (PNX)-induced alveolar regeneration remain largely unknown. In this study, we demonstrate that mechanical-tension-induced YAP activation in alveolar stem cells plays a major role in promoting post-PNX alveolar regeneration. Our results indicate that JNK and p38 MAPK signaling is critical for mediating actin-cytoskeleton-remodeling-induced nuclear YAP expression in alveolar stem cells. Moreover, we show that Cdc42-controlled actin remodeling is required for the activation of JNK, p38, and YAP in post-PNX lungs. Our findings together establish that the Cdc42/F-actin/MAPK/YAP signaling cascade is essential for promoting alveolar regeneration in response to mechanical tension in the lung.


Assuntos
Actinas/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Fosfoproteínas/genética , Pneumonectomia , Alvéolos Pulmonares/metabolismo , Regeneração/genética , Proteína cdc42 de Ligação ao GTP/genética , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Antracenos/farmacologia , Fenômenos Biomecânicos , Proteínas de Ciclo Celular , Proliferação de Células , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Regulação da Expressão Gênica , Imidazóis/farmacologia , MAP Quinase Quinase 4/antagonistas & inibidores , MAP Quinase Quinase 4/genética , MAP Quinase Quinase 4/metabolismo , Masculino , Mecanotransdução Celular , Camundongos , Fosfoproteínas/metabolismo , Cultura Primária de Células , Alvéolos Pulmonares/citologia , Alvéolos Pulmonares/cirurgia , Piridinas/farmacologia , Mucosa Respiratória/citologia , Mucosa Respiratória/metabolismo , Mucosa Respiratória/cirurgia , Células-Tronco/citologia , Células-Tronco/metabolismo , Proteínas de Sinalização YAP , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...